1898年11月8日,伦琴发现了X射线,从此无损检测技术开始发生了质的变革。它使固体内部的缺陷得以直观地显现出来。X射线是一束光子流。在真空中,它以光速直线传播,本身不带电,故不受电磁场的影响。具有波粒二象性。从物理学中,我们知道,凡具有加速度的带电粒子都会产生电磁辐射。因此当电子在高压电场的作用下,高速运动时,突然撞击到靶面,(会产生很大的负加速度)从而形成了所谓的韧致辐射。简单地说,它是由高速运动的电子撞击靶面而产生的。另一方面,当电子的动能足够大时,将会把靶面原子的内层电子轰击出来,在原位置形成孔穴,而此刻,外层的电子(位于高能级)产生跃迁以填补该孔穴。同时,它将多余的能量以X射线的形式放出,形成所谓的标识X射线。标识射线的波长是不连续的。它取决于靶面的材料。通常用于对材料的化学成分进行定性分析。在无损检测探伤中,一般用前者。 光谱测厚仪简单地说萤光X射线装置(XRF)和X射线衍射装置(XRD)有何不同,萤光X射线装置(XRF)能得到某物质中的元素信息(物质构成,组成和镀层厚度),X射线衍射装置(XRD)能得到某物质中的结晶信息。 具体地说,比如用不同的装置测定食盐(氯化钠=NaCl)时,从萤光X射线装置得到的信息为此物质由钠(Na)和氯(Cl)构成,而从X射线衍射装置得到的信息为此物质由氯化钠(NaCl)的结晶构成。单纯地看也许会认为能知道结晶状态的X射线衍射装置(XRD)为好,但当测定含多种化合物的物质时只用衍射装置(XRD)就很难判定,**先用萤光X射线装置(XRF)得到元素信息后才能进行定性。 膜厚仪也叫X射线测厚仪,它的原理是物质经X射线或粒子射线照射后,由于吸收多余的能量而变成不稳定的状态。从不稳定状态要回到稳定状态,此物质必需将多余的能量释放出来,而此时是以荧光或光的形态被释放出来。荧光X射线镀层厚度测量仪或成分分析仪的原理就是测量这被释放出来的荧光的能量及强度,来进行定性和定量分析。